Example 3:

Draw a dilation of quadrilateral $A B C D$ with vertices $A(0,12)$, $B(9,9), C(12,6), D(3,3)$. Use a scale factor of $\frac{1}{3}$.

coordinate notation for a dilation

$(x, y) \rightarrow(\quad, \quad)$
where k is the scale factor.
Reduction
Enlargement

What is a dilation?

a dilation
is a transformation that \qquad or a figure to create a similar figure.

In a dilation, the figure is enlarged or reduced to a fixed point called the center of dilation.

The scale factor of a dilation is the \qquad of the side length of the image to the corresponding side length of the
original figure. The corresponding sides are \qquad

Example 4:

Find the scale factor of the dilation shown.

Reducing a figure

Example 1:

Draw a dilation of $\triangle A B C$ with yertices $A(1,0), B(3,3), C(3,1)$. Use a scale factor of 4.

Example 2:

Find the scale factor of the dilation shown.

Enlarging a figure

Example 3:

Draw a dilation of quadrilateral $A B C D$ with vertices $A(0,12)$, $B(9,9), C(12,6), D(3,3)$. Use a scale factor of $\frac{1}{3}$.

$$
\begin{gathered}
(x, y) \rightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right) \\
A(0,12) \rightarrow A^{\prime}(0,4) \\
B(1,9) \rightarrow B^{\prime}(3,3) \\
C(12,6) \rightarrow C^{\prime}(4,2) \\
D(3,3) \rightarrow D^{\prime}(1,1)
\end{gathered}
$$

coordinate notation for a dilation

$(x, y) \rightarrow(k x, k y)$
where k is the scale factor.

Reduction

$$
0<k<1
$$

Enlargement
$k>1$

What is a dilation?

a dilation is a transformation that reduces enlarges a figure to create a similar figure.

In a dilation, the figure is enlarged or reduced to a fixed point called the center of dilation.

The Scale factor of a dilation is the \qquad of the
side length of the image to the corresponding side length of the
original figure. The corresponding sides are \qquad
proportional

Example 4:

Find the scale factor of the dilation shown.

$$
\begin{aligned}
(x, y) & \rightarrow(k x, k y) \\
A(-5,10) & \rightarrow \mathrm{A}^{\prime}(-1,2) \\
\mathrm{B}(5,0) & \rightarrow \mathrm{B}^{\prime}(1,0) \\
\mathrm{C}(-5,-5) & \rightarrow \mathrm{C}^{\prime}(-1,-1)
\end{aligned}
$$

Scale Factor: $\frac{1}{5}$

Reducing a figure

Example 1:

Draw a dilation of $\triangle A B C$ with yertices $A(1,0), B(3,3), C(3,1)$.
Use a scale factor of 4.

$$
(x, y) \rightarrow(4 x, 4 y)
$$

$$
\mathrm{A}(1,0) \rightarrow \mathrm{A}^{\prime}(4,0)
$$

$$
B(3,3) \rightarrow B^{\prime}(12,12)
$$

$$
C(3,1) \rightarrow C^{\prime}(12,4)
$$

Example 2:

Find the scale factor of the dilation shown.

$$
\begin{aligned}
(x, y) & \rightarrow(k x, k y) \\
A(-1,0) & \rightarrow A^{\prime}(-3,0) \\
B(1,-2) & \rightarrow \mathrm{B}^{\prime}(3,-6) \\
C(-1,-4) & \rightarrow \mathrm{C}^{\prime}(-3,-12) \\
D(-2,-3) & \rightarrow D^{\prime}(-6,-9)
\end{aligned}
$$

Scale Factor: 3

Enlarging a figure

Directions

Print pages $1 \& 2$ (3 \& 4 for the answer key) double sided. On my printer, I use the option to print double sided and to flip along the long edge. If you are printing single sided, simply place the pages in the copy machine as you normally would photocopy any two-sided document. The copy machine automatically "flips along the long edge".

Have students cut the sheet in half (along the dotted line).
Then, line up the two pieces as shown:

Lastly, fold over the top half and secure with a few staples.

The final product should look like this:

